

Guida alla Selezione, VLT® Decentral Drive FCD 302

Il controllo sempre più vicino al motore- tutto ciò di cui avete bisogno in un unico contenitore

La nuova generazione VLT® Decentral Drive FCD 302

Posizionare il controllo di velocità in prossimità del motore può offrire maggiori vantaggi economici.

Ad esempio in installazione multipla di drives di piccola taglia, soprattutto in applicazioni come nastri trasportatori, industrie del food & beverage, e per la movimentazione dei materiali.

Con l'introduzione del VLT® Decentral Drive FCD 302 di nuova generazione, Danfoss ha concentrato l'attenzione sul design e la funzionalità del decentralizzato.

Negli impianti dove sono presenti motori multipli come ad esempio impianti nell'imbottigliamento, impianti per la preparazione di alimenti, per il confezionamento e per il trasporto bagagli negli aeroporti, spesso sono presenti centinaia di inverter distribuiti all'interno di vaste aree.

In questi casi i costi di cablaggio superano quelli dei singoli inverter, ecco perché è importante posizionare il controllo vicino ai motori.

I primi al mondo

Quando Danfoss introdusse i primi convertitori di frequenza sul mercato, più di 50 anni fa, il primo VLT® era proprio un inverter decentralizzato, per installazioni in prossimità del motore.

Il nuovo VLT® trovò presto impiego nell'industria alimentare e delle bevande, nelle macchine per il confezionamento e sui nastri trasportatori, grazie alle sue caratteristiche di adattabilità ad ambienti dove la presenza di alimenti e liquidi richiedeva più attenzione all'igiene e alla pulizia. Alcuni di questi primi VLT® sono tuttora in funzione.

Ritorno al concetto del decentralizzato

La rapida evoluzione della tecnologia ha portato allo sviluppo dei semiconduttori, pertanto la necessità di raffreddamento non era più fondamentale e gli inverter venivano progettati per essere installati in stanze di controllo centralizzate; gli inverter multipli venivano installati in armadi elettrici molto ampi e cablati ai motori, anche a significativa distanza.

Il cerchio si è chiuso e gli oltre 50 anni di esperienza di Danfoss, leader nella

progettazione di drives e nello sviluppo tecnologico avanzato, hanno portato a un dispositivo decentralizzato a elevate prestazioni con le stesse funzioni di controllo e le stesse prestazioni dei drives centralizzati, oggi in uno speciale contenitore IP66 appositamente progettato per adattarsi perfettamente ad applicazioni con motori multipli, in vari settori industriali. combinazione tra ingegneria dei processi di produzione e di meccanica e un buon livello di conoscenza della microbiologia.

Danfoss rispetta i requisiti igienici sin dalla fase iniziale di sviluppo dei propri inverter, poiché eventuali provvedimenti su impianti già esistenti, per soddisfare i requisiti igienici, spesso risultano più costosi e privi di risultati.

Esigenza di un design igienico

Le normative igieniche sono molto restrittive soprattutto nelle aree dedicate alla produzione alimentare ma anche negli impianti farmaceutici e del settore della cosmesi.

Tali normative comprendono le specifiche e le linee guida per la protezione attiva e completa degli alimenti contro la contaminazione da batteri, funghi e lieviti durante la lavorazione. Il risultato può essere riassunto in due parole: "Design Igienico".

Pertanto, gli addetti ai lavori devono attenersi alle normative per migliorare e raggiungere tali obiettivi. Il design igienico dell'impianto di produzione e dei componenti si basa su una giusta

Nuove tendenze igieniche

Le normative UE per la conformità Ad esempio, nell'industria delle Inoltre, i nuovi materiali per il igieniche. Le confezioni in plastica per i cosmetici, infatti, così come bevande, richiedono nuove misure, poiché non tollerano la pulizia o la sterilizzazione termica che un tempo venivano impiegate per rendere asettici i contenitori

Il "decentralizzato" può risultare più conveniente rispetto al "centralizzato"

L'inverter decentralizzato di ultima generazione Danfoss VLT® FCD 302 è stato progettato con semplicità e robustezza e offre numerosi vantaggi nelle installazioni multi-motore, perché può essere posizionato in prossimità del motore.

Concetto "one box" per minimizzare i costi di progettazione e installazione

A differenza di alcuni inverter decentralizzati, il VLT® FCD 302 è una pratica soluzione "one box" basata sulla stessa affidabile piattaforma del VLT® AutomationDrive.

Fino al 40% di risparmio sui costi

Dichiarazione dei produttori di macchine, che confermano un risparmio fino al 40% sulla progettazione macchina/impianto, ottenuto concentrandosi sul concetto di decentralizzato ma con costi di progettazione e installazione nettamente inferiori. Non sono necessarie scatole di derivazione esterne a 24 V CC. Tutto ciò che serve si trova all'interno di un unico contenitore.

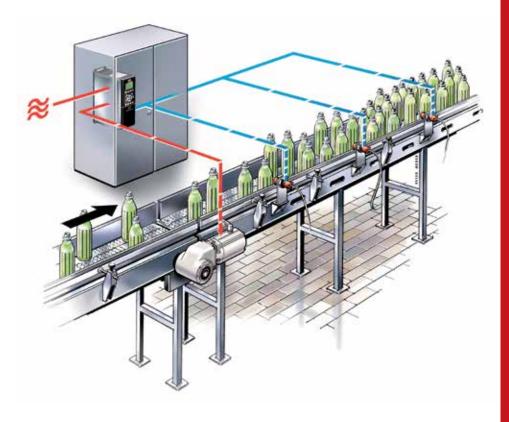
Un grande vantaggio per gli OEM: meno dispositivi da installare, meno collegamenti e terminazioni. Tutto questo contribuisce a ridurre i costi di manodopera.

Tempi di messa in servizio e costi ridotti

Con gli inverter decentralizzati, gli OEM possono fornire direttamente l'intero sistema di trasporto già pre-cablato e testato, risparmiando così i tempi di messa in servizio e i costi di personale specializzato. In questo modo, non occorre più la presenza sul posto di dispendioso personale specializzato per le operazioni di installazione e di collaudo; è sufficiente infatti collegare i cavi di alimentazione e bus di campo ed è subito in funzione.

Sistema di distribuzione I/O integrato

Il design modulare permette di collegare tutti i sensori e attuatori di ciascun nastro (es. proximity e valvole solenoidi) agli I/O ad alta velocità degli FCD 302. Tutti i drives possono essere collegati al PLC tramite un bus di campo ad alta velocità risparmiando il costo di un sistema di I/O distribuito. L'installazione sul campo si limita alla connessione dei soli cavi di potenza e dei bus di campo.


Riduzione dei costi per aree di controllo

Montando gli inverter vicino o persino sopra ai motori, si elimina la necessità di adibire un'area per il controllo o di armadi elettrici, riducendo notevolmente i costi.

Riduzione dei costi di cablaggio

Maggiori risparmi si ottengono anche riducendo i costi di cablaggio, grazie al tipo di cablaggio in entrata e in uscita con impiego di cavi non schermati.

L'installazione di drives in prossimità dei motori elimina la necessità di utilizzo di lunghi e costosi cavi schermati dall'inverter al motore.

Cablaggio di controllo semplificato

Le comunicazioni seriali e le opzioni bus di campo si semplificano riducendo i costi d'installazione dei cavi di controllo, garantendo comunque il controllo dell'intero sistema centrale.

Design igienico

Avendo collaborato per anni con le industrie del settore Food & Beverage, Danfoss conosce benissimo l'importanza di un impianto robusto, resistente a frequenti lavaggi, agli acidi e ai detergenti, che non favorisca la crescita di batteri e che possa essere mantenuto pulito in modo semplice e veloce, così che si riducano i tempi di manutenzione.

Aumento dei tempi di funzionamento

Gli inverter decentralizzati sono da sempre i più veloci nella ricerca dei quasti. I cicli dell'inverter possono essere velocemente e accuratamente isolati per ogni unità.

Grazie al design modulare "twin-part" dell'FCD 302, composto da due soli componenti principali (scatola morsettiera ed elettronica), i pezzi difettosi possono essere sostituiti velocemente anche da personale non qualificato. I costi per i pezzi di ricambio si riducono in modo significativo poiché sono necessari soltanto due unità di scorta per garantire la tensione necessaria nell'impianto.

Alta prestazione dinamica

Grazie all'avanzata strategia di controllo vettoriale avanzato, l'FCD 302 può essere utilizzato sia con motori a magneti permanenti compatti, efficienti e ad alte prestazioni, sia con motori asincroni senza la necessità di encoder. Un solo drive da un lato all'altro dell'installazione.

Due versioni

L'inverter decentralizzato VLT®FCD 302 è disponibile in due versioni per adattarsi meglio alle esigenze del cliente a seconda dell'ambiente di produzione, ambienti secchi o umidi, poiché garantisce un alto grado di igiene.

Dove il decentralizzato ha successo

Food & Beverage

Nastri trasportatori per bevande

Nei moderni impianti di imbottigliamento, i nastri trasportatori possono essere lunghi dei chilometri.

È importante un controllo accurato e una manutenzione regolare per mantenere l'ambiente sterile anche con pulizia e lavaggi giornalieri.

Il convertitore di frequenza con grado di protezione IP 66 può essere trattato con soluzioni igieniche aggressive, senza alcuna conseguenza.

Birra, bevande di ogni genere, nessun problema per l'FCD 302.

Nastri trasportatori per cassette e pallet

La parte finale di una linea di produzione nell'industria alimentare è generalmente

composta da convogliatori per cassette

L'estremità opposta della linea di produzione potrebbe essere piuttosto distante dalla sala selettrice elettrica principale, di consequenza il cavo che scorre tra i motori è molto lungo e costoso

II VLT® Decentral Drive FCD 302 ha rivoluzionato tutto questo. Ogni motore viene controllato tramite un VLT® FCD 302 posizionato in prossimità e con il nuovo sistema di cablaggio, la lunghezza dei cavi si riduce notevolmente con conseguente riduzione dei costi.

La manutenzione è semplificata, poiché si identificano facilmente i singoli inverter, così anche per quanto riguarda le riparazioni grazie al design modulare facilmente intercambiabile.

Nastri trasportatori per alimenti

Nelle aree di produzione alimentari dove il prodotto può entrare in contatto con l'impianto e i motori, è importante parlare di design igienico per cercare di ridurre i rischi di contaminazione e quindi salvaguardare gli articoli da banco. Se l'impianto per la lavorazione degli alimenti ha un design definito non igienico, diventa difficile anche eliminare le contaminazioni microbatteriche.

L'inverter Decentralizzato VLT® FCD 302 è stato progettato senza fessure e senza aperture per evitare l'intromissione di microrganismi e di sporco; è dotato di una superficie liscia più semplice da pulire e di connettori in acciaio inox in conformità alle normative sull'igiene in vigore nelle aree

di produzione di alimenti, e alle normative che regolano la sicurezza alimentare negli impianti di produzione.

Inoltre, l'FCD 302 si adatta perfettamente all'installazione su nastri trasportatori per alimenti semplificando l'utilizzo di cavi e riducendo quindi i costi di cablaggio.

Movimentazione materiali

Nastri trasportatori

Data la perfetta risposta alle esigenze di questo tipo di applicazione, i I VLT® Decentral Drive FCD 302 avrebbe potuto essere progettato specificamente per macchine di movimentazione dei materiali.

Un alto numero di inverter distribuiti in una vasta area, non è gestibile mantenendo un unico quadro centralizzato, sarebbe necessario utilizzare cavi motore molto lunghi, con tutte le problematiche che ne conseguono (EMC, costi, installazione, ecc,) necessitando inoltre di filtri e induttanze

addizionali a costi elevati. Con il VLT® FCD 302 non è necessaria l'installazione di filtri e induttanze aggiuntivi, poiché inverter e motori si trovano a pochi centimetri l'uno dall'altro, riducendo notevolmente i costi di cablaggio.

Per lo stesso motivo, anche la configurazione del filtro RFI risulta conforme alla categoria 2/A1 – primo ambientee interferisce in misura minore con le apparecchiature sensibili.

Sistemi di smistamento

I sistemi selezionatori richiedono una risposta rapida ai convertitori di frequenza che li alimentano e le prestazioni dinamiche del VLT® Decentral Drive FCD 302 sono la soluzione ideale per queste apparecchiature.

Anche in questo caso, l'installazione ricopre un'area molto vasta, dove quindi non è conveniente centralizzare tutti gli azionamenti in un unico quadro elettrico, poiché diventerebbe difficile identificare il singolo azionamento; inoltre all'interno del quadro elettrico si creerebbe una dissipazione termica che necessiterebbe

di essere smaltita con un sistema di raffreddamento ausiliario.

Installando i VLT® FCD 302 vicino ai motori, si riduce la lunghezza dei cavi, l'identificazione del singolo azionamento si semplifica e la dissipazione termica si diffonde in un'area più ampia, riducendo i costi.

VLT® Decentral Drive FCD 302 – Il concetto "one box" riduce i costi di esercizio a lungo termine (Total Cost of Ownership)

I costi di esercizio (TCO - Total Cost of Ownership) sono l'argomento principale su cui ci si basa un processo decisionale che riguarda l'acquisto di un impianto di una certa complessità. Il prezzo più economico non è una scelta d'acquisto intelligente. Il prezzo deve essere ragionevole ma allo stesso tempo è influenzato da numerosi fattori che a loro volta influenzano il costo dell'impianto per tutta la sua durata. Ouesti fattori, dai costi dell'ordine ai costi di funzionamento e di manutenzione, possono essere superiori al costo totale impiegato per l'acquisto dell'intero impianto, trasformando quindi un acquisto economico in un vero e proprio dispendio a lungo termine.

Il nuovissimo VI T[®] Decentral Drive FCD 302 completa la transizione dal convertitore di frequenza VLT® al concetto di "one box", che permette di ridurre al minimo i costi di esercizio a lungo termine (TCO).

È un concetto molto semplice – tutto ciò di cui avete bisogno per controllare il motore è contenuto all'interno del dispositivo IP 66. Create un percorso di cavi di rete all'interno del contenitore e collegatelo verso l'unità successiva, collegate il cavo al motore e siete pronti per l'avviamento dell'impianto. Aggiungete un cavo bus di campo ad alta velocità e i Vostri drives saranno parte integrante dell'intera rete di controllo. Non è necessaria un'alimentazione esterna da 24 V CC. un controllore esterno o un interruttore - è tutto dentro al Vostro FCD 302.

L'FCD 302 contribuisce sotto tutti i punti di vista a contenere nel tempo i costi di esercizio.

Grazie al suo design unico, si semplificano l'ordine, l'installazione, la messa in funzione e la manutenzione.

Prestazione e funzionamento

In termini di prestazione e funzionamento, l'FCD 302 utilizza la stessa piattaforma della già nota gamma Danfoss VLT® AutomationDrive, quindi è facile da utilizzare poiché non vi sono nuovi concetti tecnici da conoscere.

Documentazione e ricambi

Occorre una quantità inferiore di documentazione e di ricambi e non sono necessarie scatole di distribuzione sul posto né menu a discesa; si tratta inoltre di un prodotto concepito per un mercato globale con certificazioni locali e documentazioni disponibili in numerose lingue.

Interfaccia semplice

Interfaccia semplice tra la scatola morsettiera e la sezione di controllo. Ciò significa che basta un solo disegno per illustrare lo schema elettrico e l'installazione del drive.

Gestione ordini

La gestione degli ordini è più semplice e rapida grazie al numero limitato di linee d'ordine. Questo significa procedure più snelle nella gestione degli ordini di acquisto e meno rischi di errore.

Per la merce in arrivo il numero dei pezzi da controllare è inferiore, per cui si risparmia tempo nel controllo del numero dei pezzi rispetto all'ordine effettuato; diminuisce il rischio di pezzi mancanti, e si riduce lo spazio richiesto per lo stoccaggio.

Installazione

Meno unità da montare, quindi risparmio di tempo e di ore di lavoro. Inoltre, diminuendo il numero dei cavi, si risparmiano tempo e costi anche sui sistemi di gestione cavi. Non è richiesta l'alimentazione esterna di 24 Vcc, quindi siriducono i costi di alimentazione e cablaggio. Un numero inferiore di collegamenti e connettori si traducono in riduzione dei costi della manodopera nell'installazione e delle probabilità di malfunzionamento causate da una scarsa o errata connettività.

Messa in funzione

Grazie al concetto "one box" il tempo necessario per la messa in funzione si riduce in modo significativo. Con il display grafico in più lingue dotato di manuale in linea si evita di perdere tempo per cercare il manuale. L'interfaccia uomo-macchina si basa sul pluri-premiato display grafico multilingue VLT®, personalizzabile con la visualizzazione dei soli parametri che interessano all'utilizzatore, e che integra il manuale di funzionamento.

L'FCD 302 utilizza il software di programmazione MCT 10, testato sul campo su migliaia di inverter VLT®. I programmi possono essere memorizzati e condivisi; particolarmente indicato per gli OEM, che possono pre-programmare gli inverter prima dell'avviamento,

velocizzando così la messa in funzione. Collegamento PC attraverso USB, RS485, HPFP e un programma di semplificazione delle funzioni scaricabile da internet per aggiornare le impostazioni di fabbrica settate dagli OEM presso l'impianto dell'utilizzatore finale; tutto questo semplifica e riduce i costi di messa in funzione

Assistenza tecnica

L'FCD 302 è probabilmente l'inverter più semplice e facile da gestire, dal punto di vista dell'assistenza tecnica, sviluppato da Danfoss. L'individuazione automatica dei guasti insieme all'accesso immediato al manuale attraverso il display grafico, facilita la ricerca e l'individuazione dei quasti. Gli allarmi e le funzioni sono registrati in memoria per un facile accesso e interpretazione degli eventi passati.

Grazie al design "twin-part" composto da due soli componenti principali (scatola morsettiera ed elettronica), si riduce il tempo necessario per l'individuazione dei guasti e per la sostituzione dei pezzi. Il pezzo guasto può essere sostituito da personale non qualificato e il numero dei parti di ricambio da stoccare in magazzino è inferiore. Di conseguenza non avrete più scaffali pieni di schede di circuiti stampati danneggiati (e mai quello giusto disponibile). Solo due componenti, quello superiore e quello inferiore, e l'assistenza è veloce e affidabile.

I sei LED indicano lo stato del dispositivo in tempo reale - per ulteriori programmazioni e configurazioni, è possibile collegare un display grafico identico a quelli della serie di inverter FC.

FCD 302 – Il concetto "one box" Tutto quello di cui avete bisogno in un unico contenitore

Alimentazione integrata a 24 V

L'alimentazione a 24 V CC è fornita dalla distribuzione remota I/O dell'inverter.

Power looping

Il nuovo FCD 302 facilità il power looping interno. All'interno della scatola vi sono morsetti per cavi di alimentazione da 6 mm² (contenitore grande) o 4 mm² (contenitore piccolo) che permettono collegamenti a unità multiple sullo stesso circuito.

Switch Ethernet

Sono disponibili nel convertitore di frequenza l'interruttore Ethernet integrato/ bocchetta con due porte RJ-45 per un semplice collegamento a margherita della comunicazione Ethernet. Il cablaggio dei Bus di campo tra più unità è facilitato grazie a un connettore M12 precablato internamente, che permette una connettività Ethernet o Profibus più rapida.

Comunicazione PROFIBUS

Accesso diretto e veloce ai morsetti a molla per il daisy-chaining.

I/O decentralizzati

Il collegamento di tutti i dispositivi I/O avviene attraverso i connettori M12 IP 67 sull'FCD 302.

Morsetti di controllo

I morsetti a molla progettati appositamente aumentano l'affidabilità e facilitano messa in funzione e assistenza.

EMC ed effetti sulla rete

Il VLT® Decentral Drive è conforme agli standard EMC A1 secondo la normativa EN

Le bobine CC integrate garantiscono anche un basso carico armonico sulla rete in conformità alla normativa EN 61000-3-12. aumentando così la durata dell'inverter.

Collegamento display

Il pluri-premiato Pannello di Controllo Locale (LCP) utilizzato per i già noti inverter centralizzati della serie FC può anche essere installato sull'FCD 302. Il collegamento può essere effettuato dall'esterno, attraverso la presa LCP integrata, senza bisogno di aprire la scatola morsettiera.

Tramite il pulsante INFO si accede a tutte le informazioni tecniche, rendendo superfluo il manuale cartaceo. L'adattamento automatico del motore, il menu di configurazione rapida e il grande display grafico facilitano le operazioni di messa in servizio e funzionamento.

Smart logic controller integrato

Lo Smart Logic Controller è una funzionalità semplice ma intelligente che permette all'inverter, al motore e all'applicazione di lavorare congiuntamente. Lo smart logic controller monitora un evento specificato. quando questo si verifica, svolge un'azione impostata e comincia a monitorare l'evento predeterminato successivo. Continua così fino a 20 fasi. per poi tornare alla fase uno.

Sicurezza

Il convertitore di frequenza nel modello standard integra la funzione Safe Torque Off (arresto di sicurezza), approvata dalle autorità per le installazioni della categoria 3 in conformità alla normativa EN ISO 13849-1 e della categoria SIL 2 in conformità alla normativa IEC 61508.

Questa funzione evita l'avvio involontario del motore. Sono disponibili, come opzioni, ulteriori funzioni di sicurezza.

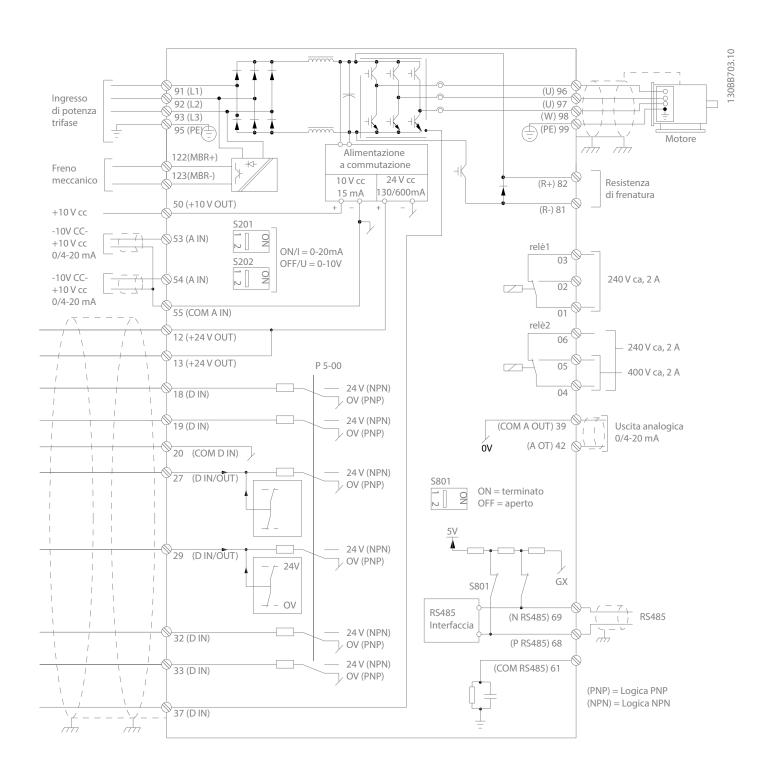
Software

Il convertitore di freguenza può anche essere gestito tramite il software di programmazione VLT® MCT 10, grazie alla connessione USB/RS485 integrata o tramite bus di campo. La porta USB è situata nella parte esterna, senza alcun bisogno di aprire la scatola morsettiera, basta semplicemente rimuovere il coperchio dall'apposito foro.

Bobine CC integrate per limitare la distorsione.

Morsetti facilmente accessibili per looping interno

Facile accesso per collegamento PC



Due dimensioni

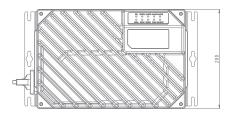
Il VLT® Decentral Drive FCD 302

Esempi di collegamenti

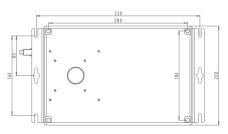
Lo schema mostra i morsetti dell'FCD302. Le opzioni aggiuntive espandono il numero di morsetti. I numeri indicati rappresentano i morsetti dell'inverter.

Gli utilizzatori possono impostare gli ingressi analogici 53 e 54 utilizzando i commutatori S201 e S202. L'FCD 302 integra un'interfaccia RS485 e una porta USB come standard, c osì anche per l'interfaccia RS485 (S801).

Se necessario, il convertitore di frequenza può essere equipaggiato di opzioni bus di campo. Per spostarsi dalla logica NPN alla logica PNP per i segnali digitali, usare il parametro 5-00.

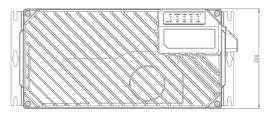

Potenza e correnti

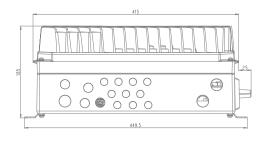
Alimentazione di rete 3 x 380 - 480 VCA

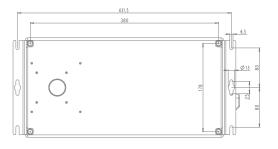

Convertitore di frequenza		PK37	PK55	PK75	P1K1	P1K5	P2K2	P3K0
Potenza all'albero standard [kW]		0.37	0.55	0.75	1.1	1.5	2.2	3.0
Potenza all'albero standard [cv] a 460 V		0.5	0.75	1.0	1.5	2.0	3.0	4.0
Corrente di uscita								
	Continua (3 x 380-440 V) [A]	1.3	1.8	2.4	3.0	4.1	5.2	7.2
	Intermittente (3 x 380-440 V) [A]	2.1	2.9	3.8	4.8	6.6	8.3	11.5
Ŭ [1:::::1] V	Continua (3 x 441-480 V) [A]	1.2	1.6	2.1	3.0	3.4	4.8	6.3
	Intermittente (3 x 441-480 V) [A]	1.9	2.6	3.4	4.8	5.4	7.7	10.1
	kVa continui (400 V CA) [kVa]	0.9	1.3	1.7	2.1	2.8	3.9	5.0
	kVA continui (460 V CA) [kVA]	0.9	1.3	1.7	2.4	2.7	3.8	5.0
	Dimensione max. del cavo: (rete, motore, freno) [mm²/ AWG]		4/11					6/10
Corrente di ingresso max.								
	Continua (3 x 380-440 V) [A]	1.2	1.6	2.2	2.7	3.7	5.0	6.5
	Intermittente (3 x 380-440 V) [A]	1.9	2.6	3.5	4.3	5.9	8.0	10.4
	Continua (3 x 441-480 V) [A]	1.0	1.4	1.9	2.7	3.1	4.3	5.7
	Intermittente (3 x 441-480 V) [A]	1.6	2.2	3.0	4.3	5.0	6.9	9.1
→ _	Taglia fusibili suggerita		gG-10 gG-					-16
h .	Max. prefusibili IEC/UL [A] suggeriti		gG-25					
	Interruttore magnetotermico suggerito (contenitore piccolo)		CTI-45MB					
	Interruttore magnetotermico suggerito (contenitore grande)		CTI-25M 047b3151					
	Perdita di potenza a carico max. [W]	35	42	46	58	62	88	116
	Rendimento	0.93	0.95	0.96	0.96	0.97	0.97	0.97
	Peso [kg] (contenitore piccolo)		9.8				X	
	Peso [kg] (contenitore grande)		12.9					

Dimensioni

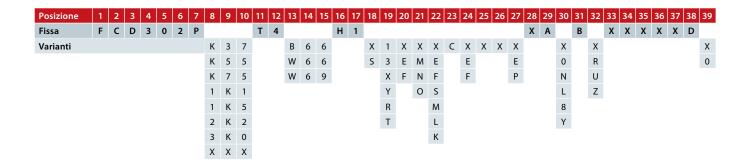
Contenitore di taglia piccola (0,37 – 2,2 kW/0,5 – 3,0 HP)







Tutte le misure sono in mm


Contenitore di taglia grande (0,37 – 3 kW/0,5 – 4,0 HP)

Codice d'ordine per FCD 302

[01-03]	Gruppo prodotti
FCD	VLT® Decentral Drive FCD 302
[04-06]	Serie di convertitori di frequenza
302	VLT® Decentral Drive
[07-10]	Taglia di potenza
PK37	0,37 kW / 0,5 cv
PK55	0,55 kW/0,75 cv
PK75	0,75 kW/1,0 cv
P1K1	1,1 kW/1,5 cv
P1K5	1,5 kW/2,0 cv
P2K2	2,2 kW/3,0 cv
P3K0	3,0 kW/4,0 cv
PXXX	Solo modulo di installazione (senza sezione di alimentazione)
[11-12]	Fasi, tensione di alimentazione
Т	Trifase
4	380 – 480 V
[13-15]	Frame
B66	Nero standard – IP 66/NEMA 4X
W66	Bianco standard – IP 66/NEMA 4X
W69	Bianco igienico – IP 66/NEMA 4X
[16 17]	-
[16-17] H1	Filtro RFI Filtro RFI classe A1/C2
[18]	Freno
X	Nessun freno
S	Freno + alimentazione freno mec- canico
[19]	Configurazione hardware
1	Prodotto completo, contenitore piccolo, montaggio stand alone
3	Prodotto completo, contenitore grande, montaggio stand alone
Х	Parte convertitore di frequenza, contenitore piccolo (Nessuna scatola d'installazione)
Y	Parte convertitore di frequenza, contenitore grande (Nessuna scatola d'installazione)
R	Scatola d'installazione, contenitore piccolo, montaggio stand alone (parte drive esclusa)
Т	Scatola d'installazione, contenitore grande, montaggio stand alone (parte drive esclusa)

[20]	Staffe
Х	Senza staffe
Е	Staffe piatte
F	Staffe da 40 mm
[21]	Tipo di filettatura
Х	Nessuna scatola d'installazione
М	Filettature metriche
N	Variante NPT 1
0	Variante NPT 2
[22]	Opzione sezionatore
Х	Senza sezionatore
E	Sezionatore di servizio su ingresso rete
F	Sezionatore su uscita motore
S	interruttore magnetotermico piccolo
М	interruttore magnetotermico medio
L	interruttore magnetotermico grande
К	Sezionatore sull'ingresso di rete con morsetti passanti addizionali (solo contenitore grande)
	(3010 contenitore grande)
[23]	Display
[23]	5
	Display
С	Display Con connettore display
C [24]	Display Con connettore display Connettore per sensoristica
C [24] X	Display Con connettore display Connettore per sensoristica Senza connettori
C [24] X E	Connettore display Connettore per sensoristica Senza connettori Montaggio diretto 4xM12
C [24] X E F	Display Con connettore display Connettore per sensoristica Senza connettori Montaggio diretto 4xM12 Montaggio diretto 6xM12
C [24] X E F [25]	Display Con connettore display Connettore per sensoristica Senza connettori Montaggio diretto 4xM12 Montaggio diretto 6xM12 Connettore motore
C [24] X E F [25] X	Display Con connettore display Connettore per sensoristica Senza connettori Montaggio diretto 4xM12 Montaggio diretto 6xM12 Connettore motore Senza connettore motore
C [24] X E F [25] X [26]	Display Con connettore display Connettore per sensoristica Senza connettori Montaggio diretto 4xM12 Montaggio diretto 6xM12 Connettore motore Senza connettore motore Connettore di rete
C [24] X E F [25] X [26] X	Display Con connettore display Connettore per sensoristica Senza connettori Montaggio diretto 4xM12 Montaggio diretto 6xM12 Connettore motore Senza connettore motore Connettore di rete Senza connettore di rete
C [24] X E F [25] X [26] X [27]	Display Con connettore display Connettore per sensoristica Senza connettori Montaggio diretto 4xM12 Montaggio diretto 6xM12 Connettore motore Senza connettore motore Connettore di rete Senza connettore di rete Connettore bus di campo
C [24] X E F [25] X [26] X	Display Con connettore display Connettore per sensoristica Senza connettori Montaggio diretto 4xM12 Montaggio diretto 6xM12 Connettore motore Senza connettore motore Connettore di rete Senza connettore di rete Connettore bus di campo Senza connettore bus di campo
C [24] X E F [25] X [26] X [27] X E	Display Con connettore display Connettore per sensoristica Senza connettori Montaggio diretto 4xM12 Montaggio diretto 6xM12 Connettore motore Senza connettore motore Connettore di rete Senza connettore di rete Connettore bus di campo Senza connettore bus di campo M12 Ethernet
C [24] X E F [25] X [26] X [27] X E P	Display Con connettore display Connettore per sensoristica Senza connettori Montaggio diretto 4xM12 Montaggio diretto 6xM12 Connettore motore Senza connettore motore Connettore di rete Senza connettore di rete Connettore bus di campo Senza connettore bus di campo M12 Ethernet M12 Profibus

[29-30]	Opzione A
	· ·
AX	Nessuna opzione A
A0	PROFIBUS DP
AN	EtherNet/IP
AL	PROFINET
A8	EtherCAT
AY	POWERLINK
[31-32]	Opzione B
BX	Nessuna opzione B
BR	VLT® Encoder Input MCB 102
BU	VLT® Resolver Input MCB 103
BZ	VLT® Safe PLC I/O MCB 108
[33-37]	Riservato
	Miscryato
XXXXX	
[38-39]	Opzione D
DX	Senza opzione D
D0	Ingresso backup da 24 V CC

NOTA: Per informazioni sulla disponibilità di opzioni e configurazioni specifiche consultare il configuratore del convertitore di frequenza all'indirizzo http://driveconfig.danfoss.com

Opzioni e specifiche

Opzioni fieldbus

(integrate nella scheda di controllo)

- PROFIBUS DP
- PROFINET
- EtherNet/IP
- EtherCAT
- POWERLINK

Opzioni Hardware

- Staffe di montaggio
- Interruttore di servizio
- Interruttore interno
- Spine sensore M12
- ingresso 24 V CC per alimentazione di comando
- Chopper di frenatura
- Controllo e alimentazione del freno elettromeccanico
- Spine Fieldbus

Opzioni applicative

- VLT® Encoder Input MCB 102
- VLT® Resolver Input MCB 103
- VLT® Safe PLC I/O MCB 108

Alimentazione di rete (L1, L2, L3)	
Tensione di alimentazione	380 – 480 V ±10%
Frequenza di alimentazione	50/60 Hz
Fattore di potenza reale (λ)	0,92 nominale a carico nominale
Fattore di dislocazione di potenza (cos φ)	(>0.98)
Inserimento dell'alimentazione di ingresso	2 volte/min.
Dati di uscita (U, V, W)	
Tensione di uscita	0 – 100% dell'alimentazione
Frequenza di uscita	0 – 590 Hz 0 – 300 Hz (modalità Flux)
Commutazione sull'uscita	Illimitata
Tempi di rampa	0,01 – 3600 sec.
Ingressi digitali	
Ingressi digitali programmabili	4 (6)
Logica	PNP o NPN
Livello di tensione	0 – 24 V CC

Nota: Uno/due ingressi digitali possono essere programmati come uscite digitali

Ingressi analogici	
Numero di ingressi analogici	2
Modalità	Tensione o corrente
Livello di tensione	da -10 a +10 V (convertibile in scala)
Livello di corrente	0/4 – 20 mA (convertibile in scala)
Ingressi a impulsi/encoder	
Ingressi a impulsi/encoder programmabili	2
Livello di tensione	0 – 24 V CC (logica positiva PNP)
Uscita digitale	
Uscite digitali/a impulsi selezionabili	2
Livello di tensione sull'uscita digitale/ frequenza di uscita	0 – 24 V
Uscita analogica	
Uscite analogiche programmabili	1
Intervallo di corrente	0/4 – 20 mA
Uscite a relè	
Uscite a relè programmabili	2
Alimentazione integrata a 24 V	
Carico max.	600 mA

Accessori	Descrizione	N. d'ordine
Staffe di montaggio estese	Staffe da 40 mm	130B5771
Staffe di montaggio	Staffe piatte	130B5772
Cavo LCP	Cavo preconfezionato da utilizzare tra inverter e LCP	130B5776
Resistenza di frenatura 1750 ohm10 W/100%	Da inserire all'interno della scatola morsettiera sotto i morsetti motore	130B5778
Resistenza di frenatura 350 ohm 10 W/100%	Da inserire all'interno della scatola morsettiera sotto i morsetti motore	130B5780
Pannello di controllo LCP 102 VLT®	Display grafico di programmazione	130B1078
Membrana di sfiato, goretex	Previene la condensa all'interno della scatola morsettiera	175N2116
Morsetti PE, M16/20	Acciaio inox	175N2703
Ricambi	Descrizione	N. d'ordine
Coperchio di protezione	Copertura di protezione in plastica per la parte inverter	130B5770/130B5789
Guarnizione	Guarnizione tra scatola morsettiera e parte inverter	130B5773/130B5790
Busta per accessori	Pressacavi e viti di ricambio	130B5774
Interruttore di servizio	Sezionatore di ricambio per linea o motore	130B5775
Connettore LCP	Connettore di ricambio per scatola morsettiera	130B5777
Morsettiera principale	Da installare nella scatola morsettiera	130B5779
Spine sensore M12	Set di due connettori M12 da inserire nei fori passacavi	130B5411
Scheda di controllo	Scheda controllo con 24 V di backup	130B5783
Scheda controllo PROFIBUS	Scheda controllo Profibus con 24 V di backup	130B5781
Scheda controllo Ethernet	Scheda controllo Ethernet con 24 V di backup	130B5788
Scheda controllo PROFINET	Scheda controllo Profinet con 24 V di backup	130B5794
Scheda di controllo EtherCAT	Scheda controllo Ethernet con 24 V di backup	130B7124
Scheda di controllo POWERLINK	Scheda di controllo POWERLINK con alimentazione ausiliaria di 24 V	130B7125

A better tomorrow is driven by drives

Danfoss Drives è leader mondiale nel controllo di motori elettrici a velocità variabile.

Offriamo ai nostri clienti prodotti di qualità elevata, specifici per tipo di applicazione e una completa gamma di servizi che li accompagnano per tutta la loro durata.

Potete contare su di noi per conseguire i vostri obbiettivi. Ci impegniamo per garantirvi prestazioni eccellenti in ogni applicazione, offrendovi una solida competenza e prodotti innovativi per ottenere il massimo dell'efficienza e della facilità di utilizzo.

Da singoli drives fino alla progettazione e alla realizzazione di sistemi di azionamento completi, i nostri esperti sono a disposizione dei clienti per un supporto continuo, in ogni situazione.

Collaborare con noi è semplice. I nostri esperti sono disponibili online oppure tramite filiali di vendita e di assistenza presenti in più di 50 Paesi, per garantire risposte rapide in ogni momento.

Approfittate dell'esperienza di chi lavora nel settore dal 1968. I nostri convertitori di frequenza a bassa e media tensione vengono utilizzati per il controllo di tutti i più importanti brands di motori e tecnologie, in basse ed alte potenze.

Convertitori di frequenza VACON®

combinano innovazione e lunga durata per le industrie sostenibili di domani.

Per una lunga vita utile e prestazioni al top, installate uno o più convertitori di frequenza VACON® nelle esigenti industrie di processo e nelle applicazioni navali.

- Settore navale e offshore
- Oil & Gas
- Industria metallurgica

La Danfoss non si assume alcuna responsabilità circa eventuali errori nei cataloghi, pubblicazioni o altri documenti scritti. La Danfoss si riserva il diritto di modificare i suoi prodotti senza

- Industria estrattiva e mineraria
- Industria della cellulosa e della carta

- Energia
- Ascensori e scale mobili
- Industria chimica
- Altre industrie pesanti

Convertitori di freguenza VLT®

giocano un ruolo chiave nella rapida urbanizzazione di oggi, agevolando lo svolgimento della catena del freddo, la fornitura di cibo fresco, comfort nelle abitazioni, acqua pulita e salvaguardia ambientale.

Grazie alle caratteristiche di adattabilità, funzionalità e varietà di opzioni, superano di gran lunga gli altri convertitori di precisione.

- Food and Beverage
- Trattamento acqua e acque reflue
- **HVAC**
- Refrigerazione
- Movimentazione di materiali
- Industria tessile

EtherNet/IP** e DeviceNet** sono marchi ODVA, Inc